Contextual Multi-Armed Bandit

For the contextual multi-armed bandit (sMAB) when user information is available (context), we implemented a generalisation of Thompson sampling algorithm (Agrawal and Goyal, 2014) based on PyMC.

title

The following notebook contains an example of usage of the class Cmab, which implements the algorithm above.

[1]:
import numpy as np

from pybandits.cmab import CmabBernoulli
from pybandits.model import BayesianLogisticRegression, BnnLayerParams, BnnParams, StudentTArray
/home/runner/.cache/pypoetry/virtualenvs/pybandits-vYJB-miV-py3.10/lib/python3.10/site-packages/pydantic/_migration.py:283: UserWarning: `pydantic.generics:GenericModel` has been moved to `pydantic.BaseModel`.
  warnings.warn(f'`{import_path}` has been moved to `{new_location}`.')
[2]:
n_samples = 1000
n_features = 5

First, we need to define the input context matrix \(X\) of size (\(n\_samples, n\_features\)) and the mapping of possible actions \(a_i \in A\) to their associated model.

[3]:
# context
X = 2 * np.random.random_sample((n_samples, n_features)) - 1  # random float in the interval (-1, 1)
print("X: context matrix of shape (n_samples, n_features)")
print(X[:10])
X: context matrix of shape (n_samples, n_features)
[[ 0.61970578 -0.55878359 -0.37253378 -0.98865928 -0.63567949]
 [ 0.25033019 -0.74998961  0.44114183  0.65103107  0.42711191]
 [ 0.98467286 -0.83205712 -0.81067689  0.24778536 -0.06913485]
 [ 0.14651959 -0.63253858 -0.86042865 -0.3056313  -0.83283427]
 [ 0.94850655  0.64040186  0.66022441  0.16906886 -0.13418886]
 [ 0.79511079  0.17064671  0.81225684  0.31411974  0.69800277]
 [ 0.5542941   0.21259852  0.15735347 -0.25447328  0.2871204 ]
 [ 0.04756799  0.30897066  0.04291899  0.95408222 -0.97939223]
 [ 0.09924045 -0.10943301 -0.50663448 -0.84408342  0.65315606]
 [ 0.2043345   0.32746909  0.50263065  0.67370545 -0.45039193]]
[4]:
# define action model
bias = StudentTArray.cold_start(mu=1, sigma=2, shape=1)
weight = StudentTArray.cold_start(shape=(n_features, 1))
layer_params = BnnLayerParams(weight=weight, bias=bias)
model_params = BnnParams(bnn_layer_params=[layer_params])

actions = {
    "a1": BayesianLogisticRegression(model_params=model_params),
    "a2": BayesianLogisticRegression(model_params=model_params),
}

We can now init the bandit given the mapping of actions \(a_i\) to their model.

[5]:
# init contextual Multi-Armed Bandit model
cmab = CmabBernoulli(actions=actions)

The predict function below returns the action selected by the bandit at time \(t\): \(a_t = argmax_k P(r=1|\beta_k, x_t)\). The bandit selects one action per each sample of the contect matrix \(X\).

[6]:
# predict action
pred_actions, _, _ = cmab.predict(X)
print("Recommended action: {}".format(pred_actions[:10]))
Recommended action: ['a2', 'a2', 'a2', 'a1', 'a2', 'a2', 'a2', 'a1', 'a2', 'a1']

Now, we observe the rewards and the context from the environment. In this example rewards and the context are randomly simulated.

[7]:
# simulate reward from environment
simulated_rewards = np.random.randint(2, size=n_samples).tolist()
print("Simulated rewards: {}".format(simulated_rewards[:10]))
Simulated rewards: [1, 1, 0, 1, 0, 1, 1, 0, 0, 1]

Finally, we update the model providing per each action sample: (i) its context \(x_t\) (ii) the action \(a_t\) selected by the bandit, (iii) the corresponding reward \(r_t\).

[8]:
# update model
cmab.update(context=X, actions=pred_actions, rewards=simulated_rewards)
/home/runner/.cache/pypoetry/virtualenvs/pybandits-vYJB-miV-py3.10/lib/python3.10/site-packages/pytensor/link/c/cmodule.py:2968: UserWarning: PyTensor could not link to a BLAS installation. Operations that might benefit from BLAS will be severely degraded.
This usually happens when PyTensor is installed via pip. We recommend it be installed via conda/mamba/pixi instead.
Alternatively, you can use an experimental backend such as Numba or JAX that perform their own BLAS optimizations, by setting `pytensor.config.mode == 'NUMBA'` or passing `mode='NUMBA'` when compiling a PyTensor function.
For more options and details see https://pytensor.readthedocs.io/en/latest/troubleshooting.html#how-do-i-configure-test-my-blas-library
  warnings.warn(
/home/runner/.cache/pypoetry/virtualenvs/pybandits-vYJB-miV-py3.10/lib/python3.10/site-packages/rich/live.py:256:
UserWarning: install "ipywidgets" for Jupyter support
  warnings.warn('install "ipywidgets" for Jupyter support')
/home/runner/.cache/pypoetry/virtualenvs/pybandits-vYJB-miV-py3.10/lib/python3.10/site-packages/rich/live.py:256:
UserWarning: install "ipywidgets" for Jupyter support
  warnings.warn('install "ipywidgets" for Jupyter support')